Equations of Circles 1

Mathematical goals
This lesson unit is intended to help you assess how well students are able to:

• Use the Pythagorean theorem to derive the equation of a circle.
• Translate between the geometric features of circles and their equations.

Common Core State Standards
This lesson involves mathematical content in the standards from across the grades, with emphasis on:

G-GPE: Expressing geometric properties with equations.
A-CED: Create equations that describe numbers or relationships

This lesson involves a range of mathematical practices, with emphasis on:
1. Make sense of problems and persevere in solving them.
5. Use appropriate tools strategically.
7. Look for and make use of structure.

Introduction
The unit is structured in the following way:

• Before the lesson, students work individually on an assessment task that is designed to reveal their current understanding and difficulties. You then review their work, and create questions for students to answer in order to improve their solutions.
• During the lesson, students work collaboratively, categorizing equations, and geometric descriptions of circles.
• After a whole-class plenary discussion, students revise their solutions to the assessment task.

Materials required

• Each student will need two copies of the assessment task, Going Round in Circles, a mini-whiteboard, a pen and an eraser.
• Each small group of students will need Card Set: Equations (cut up before the lesson), an enlarged copy of Categorizing Equations, a compass and a glue stick.
• There are some projector resources to support whole class discussions.

Time needed
Approximately 15 minutes before the lesson, and one single 70-minute lesson (or two 40-minute lessons.)
Timings given are only approximate. Exact timings will depend on the needs of the class.
Before the lesson

Assessment task: Going Round in Circles task (15 minutes)

Give this task, in class or for homework, a few days before the formative assessment lesson. This will give you an opportunity to assess the work, and to find out the kinds of difficulties students have with it. You will then be able to target your help more effectively in the follow-up lesson.

Give each student a copy of the assessment task Going Round in Circles.

Read through the questions and try to answer them as carefully as you can.

It is important that students are allowed to answer the questions without your assistance, as far as possible.

Students should not worry too much if they cannot understand or do everything, because in the next lesson they will engage in a similar task, which should help them. Explain to students that by the end of the next lesson, they should expect to be able to answer questions such as these confidently. This is their goal.

It is important that students are allowed to answer the questions without your assistance, as far much as possible.

Assessing students’ responses

Collect students’ responses to the task, and note what their work reveals about their current levels of understanding and their different approaches.

We suggest that you do not grade students’ work. The research shows that this will be counterproductive, as it will encourage students to compare their grades and distract their attention from the mathematics. Instead, to help students make further progress, prepare some questions that will enable students to re-engage with their work. Some suggestions for appropriate questions are given on the next page. At this stage, either write a list applicable to your own class, using a selection of these and your own questions, or if you have enough time, add appropriate questions to each piece of student work. Students will use these questions at the end of the next lesson to help improve their answers.
Common issues:

| Student incorrectly identifies the center of the circle
For example: (6,6) (Q1.) | • On a coordinate grid mark the two end points of the diameter, then draw a circle through these two points. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student sketches the graph of the circle and uses it to approximately identify the coordinates of a point on the circumference (Q1b)</td>
<td>• What math can you use to check that the coordinates are accurate?</td>
</tr>
<tr>
<td>Student correctly figures out a value for m (Q1b)</td>
<td>• Can you now figure out a second possible value for m?</td>
</tr>
</tbody>
</table>
| Student incorrectly identifies the equation of the circle or does not answer the question
For example: $x^2 + y^2 = 6$ (Q1c.) | • What is the question asking you to find?
• What do you already know about the circle?
 - How can you present this information?
 - How can you use this information to check your equation is correct?
• It may help if you sketched the circle.
• Use math to figure out the coordinates of the point (x,y) on the graph. Describe your method. |
| Student incorrectly uses the Pythagorean theorem to figure out the equation of the second circle
For example: $(x - 5)^2 + (y + 1)^2 = 14$ (Q2.) | • How can you check your equation is correct?
• Sketch the circle. |
| Student provides little explanation for their answers | • Add more explanation so that someone unfamiliar with the math can understand your answer. |
| Student correctly answers all the questions
The student needs an extension task. | • Figure out the coordinates of any x-intercepts or y-intercepts of this circle.
• The equation of a circle is $(x - 4)^2 + (y + 2)^2 = p$. Where p is an integer. Figure out a value for p that ensures the circle crosses the x-axis but not the y-axis. |
Suggested lesson outline

Whole-class introduction (15 minutes)

Give each student a mini-whiteboard, a pen and an eraser.

Show Slide 1 of the projector resource.

Throughout this introduction encourage students to justify their answers. Try not to correct answers, but encourage students to challenge each other's explanations.

Introduce the task with:

Can you find the co-ordinates of a point on this circle?

Then ask students to use their mini-whiteboards to respond to the following question:

A point on the circle has co-ordinates $(3, y)$. Write a value for y. [$y = 4$ or $y = -4$.]

If you find students are estimating the value of y, encourage them to use math to check the accuracy of their answer.

After a few minutes ask a couple of students with different values for y, to justify their answers.

If students struggle to use math to calculate an accurate answer, then you may choose to ask the following questions in turn:

Does it help if I draw some additional lines on the grid? [From the origin to $(3, y)$, and a vertical line from $(3, y)$ to the x-axis.]

How can you use the Pythagorean theorem to figure out the value for y?

Then ask the following questions in turn:

Can you think of another point on the circle, for which both coordinates are integers? Write all the points as you can think of. [E.g., $(0,5)$, $(5,0)$, $(4,3)$, $(-4, -3)$ etc.]

Now give me the coordinates of a point on the circle, for which the x value is an integer, but the y value is not an integer.

If students write a value for y correct to say, three decimal places, ask them for an exact value.

Advise students that for this task they may leave their coordinates in square root form. [E.g., $(1,\sqrt{24})$ or $(-1,\sqrt{24})$ or $(2,\sqrt{21})$ or $(2, -\sqrt{21})$ etc.] You may wish to pursue this further by asking:

Now give me the coordinates of a different point on the circle, for which the y value is an integer, but the x value is not an integer.

Mark a point (x, y) on the circle and ask students to figure out the coordinates of this general point (x, y). After a few minutes ask a few students to justify their answers.
Show Slide 2 of the projector resource.

![Two circles with the same radius but different centers](image)

Carefully introduce the second stage:

We are now going to move the circle so that its center is at (2,3). Its radius remains same.

Figure out the coordinates of two points on this new circle. Select one point that is easy to figure out and the other difficult.

Explain why your points are easy, and difficult to figure out.

Students could decide the easy points to find are the end points of the horizontal diameter or the vertical diameter: (7,3), (2,8) etc.

Again ask two or three students to explain their answers. You may find students use the Pythagorean theorem or they may translate the coordinates of a point on the first circle +2 horizontally and + 3 vertically.

Finally ask students to figure out the coordinates of the general point \((x, y)\). \[(x - 2)^2 + (y - 3)^2 = 25.\]

For classes that may struggle with the introduction

You may decide to first show students a circle drawn on a grid, marked with the coordinates of its center and the coordinates of a point on the circumference. Ask students to figure out the radius of the circle.
Collaborative activity: making posters (20 minutes)
Organize the class into small groups of two or three students.

Give each group of students a copy of Card Set: Equations, and an enlarged copy of Categorizing Circles.

Explain how students are to work collaboratively.

You are now going to continue to explore linking the equation of a circle with its center and radius.
On your desk you should have twelve equation cards, and one table.
Take turns to place an equation card in one of the categories in the table.
If you place a card, explain how you came to your decision.
It is important that you all understand the placement. If you don't agree or understand, ask your partner to explain their reasoning.
You all need to agree on, and explain the placement of every card.
Write additional information, or include a drawing as part of your explanation.
You should find some of your cards do not go in any of the first three columns. These cards are to go in one of the cells in the final column. You will need to figure out the coordinates for the center of the circle for all the equations placed in this column.
Make up your own equation for any empty cells.

Slide 3 of the projector resource summarizes these instructions.

Students may not have time to place all the equation cards. It is better if they explain their reasoning fully for a few cards than rush through trying to place all the cards.

The purpose of this structured work is to encourage students to engage with each others' explanations, and take responsibility for each others' understanding.

Encourage students not to rush, but spend time justifying fully the categorization of each card.

While students work in small groups you have two tasks, note different student approaches to the task, and support student reasoning.

Note different student approaches to the task
Notice how students make a start on the task, any interesting ways of explaining a categorization, any attempts to generalize, where they get stuck, and how they respond if they do come to a halt. For example, do students plot the graph of an equation accurately? Do students use the Pythagorean theorem to figure out the coordinates of the point (x, y) on the circle? Do students use guess and check? Do students notice that the equations in one row or column have a common feature? You can use this information to focus a whole-class discussion towards the end of the lesson.

Support student reasoning
Try not to make suggestions that move students towards a particular categorization. Instead, ask questions to help students to reason together. You may choose to use some of the questions and prompts from the Common Issues table.

If students struggle to get started, encourage them to ask a specific question about the task. Articulating the problem in this way can sometimes offer a direction to pursue that was previously overlooked. However, if a student needs their question answered, ask another member of the group for a response.

You may want to follow this with:

For this cell, what do you know about the circle? How can you present this information? What do you need to know in order to place an equation card in this cell?
Some students may try to accurately plot the graph of the equation. Encourage them to sketch the circle instead.

Is it easier to sketch the circle using the equation, or using the information for one category of the table? Why is it easier?

What math can you now use to figure out the coordinates of a point \((x, y)\) for a circle to go in this cell?

Students may use the information in the table to sketch a circle, and then substitute the coordinates of a point on this circle (for example, the coordinates of the end point of a horizontal diameter) into the left side of an equation. Then check to see if this value equates with the right side of the equation. Encourage students to reflect on this way of working and to investigate a different method.

Once students have correctly placed two or three cards along the same row or column of the table, encourage them to look at the structure of the equation, and start to make generalizations.

Do the equations you've placed in this row/column have anything in common?

What does this equation tell you about its graph?

If you find one student has placed a card in a particular category on the table, challenge another student in the group to provide an explanation.

Chan placed this card. Cheryl, why does Chan think this equation goes here?

If you find the student is unable to answer this question, ask them to discuss the work further. Explain that you will return in a few minutes to ask a similar question.

Sharing posters (10 minutes)

Give each small group a glue stick.

As students finish matching the cards, ask one student from each group to visit another group's poster.

If you are staying at your desk, be ready to explain the reasons for your group's placement of equations in the table.

If you are visiting another group, copy your table onto a piece of paper. Only write the equation number in each cell of the table.

Go to another group's desk and check to see which cells are different from your own.

If there are differences, ask for an explanation. If you still don't agree, explain your own thinking.

When you return to your own desk, you need to consider as a group whether to make any changes to your own table.

You may want to use Slide 4 of the projector resource to display these instructions.

When students are satisfied, they should glue the equations onto the poster.
Plenary whole-class discussion (15 minutes)

Organize a discussion about what has been learned. The intention is that you work with the students to make the math of the lesson more explicit, encourage students to make generalizations, and possibly explore the connections with other areas of math. Try not to focus on checking that everyone has produced the same table.

If you have noticed some interesting ways of working or some incorrect solutions you may decide to focus the discussion on these first. They can both provide a productive learning opportunity.

Here are some questions you could ask the class:

What did you find difficult about this task? Which card did you find most difficult to place? Why?

Does anyone have two equation cards in the same cell?

Ben, where did you place this card? How did you decide?

Does anyone disagree with Ben? Did anyone use a different method from Ben's? Please explain your method. Which method do you prefer? Why?

You may also choose to focus on what students have learnt about the key features of the equation of a circle.

Do the equations you've placed in this row/column have anything in common?

What does this equation tell you about its graph?

Show me the equation of a circle with a radius 10 and a center at (-2,1). How do you know?

Suppose the equation of a circle is $(x - 3)^2 + (y + m)^2 = 12$, where m is an integer. What is the radius of the circle? What are the coordinates of the center of this circle? Are there any other possible points for the center?

Improving individual solutions to the assessment task (10 minutes)

Return to the students their original assessment Going Round in Circles, as well as a second blank copy of the task.

Look at your original responses and think about what you have learned from this lesson.

Using what you have learned, try to improve your work.

When you revise your work, imagine you are explaining the solutions to someone unfamiliar with this type of math.

If you have not added questions to individual pieces of work, then write your list of questions on the board. Students should select from this list only the questions they think are appropriate to their own work.

You may also decide to ask students to reflect on what they have learnt in the lesson.

What information does an equation of a circle tell you about its graph? Give examples.

If you find you are running out of time, then you could give this task in the next lesson or for homework.
Solutions

Assessment Task: Going Round in Circles
1. a. The center of the circle is (0,0).
 b. Coordinates of points on the graph: (2,√32) or (2,−√32).
 c. Equation of the circle is \(x^2 + y^2 = 36\).
2. Equation of a circle: \((x + 5)^2 + (y - 1)^2 = 14\).

Collaborative Activity: Making Posters

<table>
<thead>
<tr>
<th>Radius of (\sqrt{5})</th>
<th>Center at (2, 1)</th>
<th>Center at (2, −1)</th>
<th>Center at (0, −1)</th>
<th>Center (−2, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((y - 1)^2 + (x - 2)^2 = 5)</td>
<td>4.</td>
<td>11. ((x - 2)^2 + (y + 1)^2 = 5)</td>
<td>(x^2 + (y + 1)^2 = 5)</td>
<td>((x + 2)^2 + (y - 1)^2 = 5)</td>
</tr>
<tr>
<td>Radius of (\sqrt{10})</td>
<td>((x - 2)^2 + (y - 1)^2 + 15 = 25)</td>
<td>7. ((x - 2)^2 + (y + 1)^2 = 10)</td>
<td>10. ((x - 2)^2 + (y + 1)^2 = 10)</td>
<td>9. ((y + 1)^2 + x^2 = 10)</td>
</tr>
<tr>
<td>Radius of 5</td>
<td>1. ((x - 2)^2 + (y - 1)^2 = 25)</td>
<td>12. ((y + 1)^2 + (x - 2)^2 = 25)</td>
<td>3. (x^2 + (y + 1)^2 = 25)</td>
<td>((x + 2)^2 + (y - 1)^2 = 25)</td>
</tr>
<tr>
<td>Radius of 10</td>
<td>((x - 2)^2 + (y - 1)^2 = 100)</td>
<td>8. ((x - 2)^2 + (1 + y)^2 = 100)</td>
<td>6. (x^2 + (y + 1)^2 = 100)</td>
<td>((x + 2)^2 + (y - 1)^2 − 100 = 0)</td>
</tr>
</tbody>
</table>
Going Round in Circles

You may want to use the space to the right of the questions to sketch graphs.

1. The end points of the diameter of a circle are (6,0) and (-6,0).
 a. What are the coordinates of the center of the circle?
 b. A point on this circle has coordinates (2, m). Write a value for m.
 Fully explain your answer.
 c. What is the equation of this circle?
 Fully explain your answer.

2. The center of another circle is (-5,1). Its radius is $\sqrt{14}$
 What is the equation of this circle?
 Fully explain your answer.
Card Set: Equations

<table>
<thead>
<tr>
<th></th>
<th>Equation</th>
<th></th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(x - 2)^2 + (y - 1)^2 = 25$</td>
<td>2</td>
<td>$(x + 2)^2 + (y - 1)^2 - 100 = 0$</td>
</tr>
<tr>
<td>3</td>
<td>$x^2 + (y + 1)^2 = 25$</td>
<td>4</td>
<td>$(y - 1)^2 + (x - 2)^2 = 5$</td>
</tr>
<tr>
<td>5</td>
<td>$(x + 2)^2 + (y - 1)^2 = 10$</td>
<td>6</td>
<td>$x^2 + (y + 1)^2 = 100$</td>
</tr>
<tr>
<td>7</td>
<td>$(x - 2)^2 + (y - 1)^2 + 15 = 25$</td>
<td>8</td>
<td>$(x - 2)^2 + (1 + y)^2 = 100$</td>
</tr>
<tr>
<td>9</td>
<td>$(y + 1)^2 + x^2 = 10$</td>
<td>10</td>
<td>$(x - 2)^2 + (y + 1)^2 = 10$</td>
</tr>
<tr>
<td>11</td>
<td>$(x - 2)^2 + (y + 1)^2 = 5$</td>
<td>12</td>
<td>$(y + 1)^2 + (x - 2)^2 = 25$</td>
</tr>
</tbody>
</table>
Categorizing Circles

<table>
<thead>
<tr>
<th></th>
<th>Center at (2,1)</th>
<th>Center at (2,−1)</th>
<th>Center at (0,−1)</th>
<th>Center (__, __)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radius of $\sqrt{5}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius of $\sqrt{10}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius of 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radius of 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A circle with a center at (0,0) and a radius of 5

A point on the circle has co-ordinates (3,\(y\)).
Write a value for \(y\).
Two circles with the same radius but different centers
Categorizing Equations

1. Take turns to place an equation card in one of the categories in the table.

2. If you place a card, explain how you came to your decision.

3. It is important that you all understand the placement. If you don't agree or understand, ask your partner to explain their reasoning.

4. Write additional information, or include a drawing as part of your explanation.

5. Some of your cards are to go in one of the boxes in the final column. You will need to figure out the coordinates for the center of the circle for all equations placed in this column.

6. Make up your own equation for any empty boxes.

You all need to agree on, and explain the placement of every card.
Sharing posters

1. If you are staying at your desk, be ready to explain the reasons for your group's placement of equations in the table.

2. If you are visiting another group, copy your table onto a piece of paper. Only write the equation numbers in each box of the table, not the whole equation.
 - Go to another group's desk and check to see which boxes are different from your own.
 - If there are differences, ask for an explanation. If you still don't agree, explain your own thinking.
 - When you return to your own desk, you need to consider as a group whether to make any changes to your own table.